Industrial Electronics and control of Drives

Prepared By: Ajit Singh, Lecturer

Inverters

Inverter

- A device that converts DC power in to AC power at desired output voltage and frequency.
- These are used for adjustable speed ac drives, induction heating, aircraft power supplies, UPS, HVDC transmission lines etc.

Classification

According to output:

- Single phase Inverter
- Three phase Inverter

According to Input Source:

- Voltage Source Inverter
- Current Source Inverter

Classification

According to Method of Commutation:

- Line Commutated Inverter
- Forced Commutated Inverter

According to Connections of Commutating Components:

- Bridge Inverter
- Series Inverter
- Parallel Inverter

- Voltage Source Inverters: In these, DC source has small or negligible impedance.
- Current Source Inverters: In these, DC source has high impedance.

Bridge Inverters

Half Bridge Inverters

- D1 and D2 are Feedback diodes, as they feed the stored energy back to source.
- Main drawback is that 3 wire DC supply is required.

Full Bridge Inverters

Series Inverter

- Inverters in which commutating components are permanently connected in series with the load are called series inverters.
- The value of R, L and is so chosen that the series RLC circuit forms an underdamped circuit.
- On turning on of T₁, current I starts building up in RLC circuit.

- As the circuit is underdamped, current decays to zero and tends to reverse.
- SCR T_1 turns off.
- SCR T_2 is turned ON.
- Capacitor begins to discharge and load current is reversed.
- Load current decays to zero, after some time.

Parallel Inverter

Current Source Inverter

Choppers

Chopper

- Chopper is a static device that converts fixed DC input voltage to a variable DC output voltage.
- Chopper may be thought as a DC equivalent of an AC transformer.
- These involve one stage conversion.
- These are more efficient.

Principle of Operation

$$V_{0} = \frac{T_{on}}{T_{on} + T_{off}} V_{s} = \frac{T_{on}}{T} V_{z} = \alpha V_{s}$$

$$T_{on} = \text{on-time}; T_{off} = \text{off-time}$$

$$T = T_{on} + T_{off} = \text{chopping period}$$

$$\alpha = \frac{T_{on}}{T} = \text{duty cycle}$$

$$V_{0} = f \cdot T_{on} \cdot V_{s}$$

$$f = \frac{1}{T} = \text{chopping frequency}$$

Methods of Controlling Output Voltage

- Constant Frequency Control:
 - On Time T_{on} is varied but chopping Frequency is kept constant.

Methods of Controlling Output Voltage

- Variable Frequency Control:
 - Either Time T_{on} or T_{off} is kept constant but chopping Frequency is varied.

Step Up Chopper

First Quadrant or Type A Chopper

Second Quadrant or Type B Chopper

Type C Chopper

Type D Chopper

Four Qudrant or Type E Chopper

EMF E Reversed

	Vo
1 chopper on <i>step-up</i> chopper CH2 operated	2 choppers on step-down chopped CH1 operated
CH2-D4 : L stores, energy	CH1-CH4 on
CH2 - off; then D1-D4 conduct	CH1 - off; then CH4-D2 condu
r bead	oover Hows Hunn son
-10	
2 choppers on <i>step-down</i> chopper	1 chopper on step-up chopper
2 choppers on step-down chopper CH3 – operated	1 chopper on <i>step-up</i> chopper CH4 operated
2 choppers on <i>step-down</i> chopper CH3 – operated CH3–CH2 : on	1 chopper on <i>step-up</i> chopper CH4 operated CH4-D2 : L stores energy
2 choppers on <i>step-down</i> chopper CH3 – operated CH3–CH2 : on CH3 – off ; then CH2-D4 conduct	1 chopper on <i>step-up</i> chopper CH4 operated CH4-D2 : L stores energy CH4 - off, then D2, D3 conduct
2 choppers on <i>step-down</i> chopper CH3 – operated CH3–CH2 : on CH3 – off ; then CH2-D4 conduct E reversed	1 chopper on <i>step-up</i> chopper CH4 operated CH4-D2 : L stores energy CH4 - off, then D2, D3 conduct E reversed

Dual Converters

Dual Converter

- A Full converter can operate in Two quadrants.
- If four Quadrant operation is required, without any mechanical changeover switch, two full converters can be connected back to back to load circuit.
- Such an arrangement using two full converters in anti parallel and connected to the same dc load is called a Dual Converter.

$$V_0 = V_{01} = -V_{02}$$

$$\begin{split} V_{max} \cos \alpha_1 &= -V_{max} \cos \alpha_2 \\ \cos \alpha_1 &= -\cos \alpha_2 = \cos \left(180 - \alpha_2\right) \\ \alpha_1 + \alpha_2 &= 180^\circ \end{split}$$

$$V_{01} = V_{max} \cos \alpha_1$$
$$V_{02} = V_{max} \cos \alpha_2$$

Types of Dual Converters

- Non Circulating Current Type
- Circulating Current Type

Non Circulating Current Type

- Only one converter operates at a time and carries the load current.
- Before second converter is triggered, it is necessary to make load current zero.

Circulating Current Type

- Both the converters are operated simultaneously
- As the instantaneous output voltage of both converters is out of phase, therefore circulating current flows between them.
- Inductors are used to limit the circulating current.

Circulating Current Type

Cycloconverters

Cycloconverter

- A device which converts input power at one frequency to output power at different frequency, with one stage conversion is called cycloconverter.
- Cycloconverter is a one stage frequency changer.

Types of Cycloconverters

- Step Down Cycloconverters
 - Output frequency is lower than supply frequency
- Step Up Cycloconverters
 - Output frequency is higher than supply frequency

Applications of Cycloconverters

- Speed control of high power ac drives
- Induction Heating
- Static Var Compensation
- For converting variable speed alternator voltage to constant frequency output voltage for use as power supply in aircraft or shipboards.

Principle of Operation

Output of Step Down Cycloconverter

Output of Step Up Cycloconverter

Principle of Operation

3 Phase, Half Wave Cycloconverter

3 Phase, Half Wave Cycloconverter

3 Phase, Half Wave Cycloconverter

3 Phase, Full Wave Cycloconverter

3 Phase, Full Wave Cycloconverter

3 Phase, Full Wave Cycloconverter

